Paris (M.) Samuel Miles-Brenden ~ 2018 March 22nd - 2018 August 25th

Standard decibel difference is the inclusion of one metre for what is the given of two specialized and differential sum relationships through:

The known that buoyancy is margin to that of displacement.
$\log (\mathrm{a})+\log (\mathrm{b})=\log (\mathrm{ab})$
Taken as (+) as inseparability is the equivalence of partition not to be confused with that of a part in whole of what excluded there is found in the old vantage of the prior presented.
and then;

To exclude the exceptionable of a known relation of round for then in two of circle we have.
with $\mathrm{b}=\mathrm{a}+\mathrm{i}^{*} \mathrm{~d}$
with $a=c+i^{*} d$
One as the completion of a circle b with any equivalently measured complexity class; or, as $\mathrm{a}=\mathrm{M} ;(\mathrm{c}, \mathrm{d})$.

Taken as the round of one existent mathematical notion to the stereographic modularity.
Is the connection of an incongruent return for what is an outside relation known alternatively as fact.
A linear algebraic ratio element of the Moebius group; for which is it's decomposition-ally free end.
A stereographic representation includes the differences of it's dependence on an elsewhere then to be found as in that of the interior reference of a kernel of which is it's departure to another side of 0 ;

Hence; $\mathrm{a} / \mathrm{b}+\mathrm{c} / \mathrm{d}=\mathrm{e} / \mathrm{f} \sim(\mathrm{ac})+(\mathrm{bd})$ with groups as unitary division and summation as identity of zero.
Then as the geometric ratio of the equivalence of solid relations of wholeness in then the known cross ratio: or as; Golden Ratio. The contactless relation by which any five points are indeterminately open.

Is a linear algebraic differential field element.
$(a+c) /(b+d)=e / f$
As to be known as $1 / 1 \sim$ with Unitary Equivalence of $+/-1=$ radical inverse 2 as 0 .
eta $+\log (\mathrm{b})=\log _{-} \mathrm{c}(\mathrm{ab})=\log _{-} \mathrm{c}(\mathrm{a}) / \log _\mathrm{b}(\mathrm{c})+\log _{-} \mathrm{b}(\mathrm{c}) / \log _\mathrm{c}(\mathrm{b})$

As to be known as modularity of one given.
~
open inclusion of what then alone is one with the given choice of base founded on the remainder of coset to it's given injunctive default separable, eta; removable by then the equivalence of logarithms under any circling of zero remainder one as the then known completion of a foliation in manifolds and that of a comparative kissing problem algeo-geometrically with completion of a smooth relation: given:
zeta+eta=chi;
There then alone of part comparative equivalence of variables are particle notions to types.
To that of what is time (eta) as a measure in one of exceeded capacity; there in the given of what is a logarithm of it's geometric participance of extension of measure in per part equivalence proportion to it's delimitation of spatial extent; per given interval of part whole in either given of variable free (c), quantities to unknown variable declarative (a, b) explicit mathematical structure; the given of one for an other of the exchanged of freed relation is a known then as the compendium as the foundation to that of the common of which is the inseparability of empty freely equivalent quantifiers on that of the geometric platonic solids of their discriminant formation in what of on is another the gimbal to a forementioned (b) algebraically open alternatively provided departure from a way of manner or path to a freed coextensive meaning in either consideration of balance of level or measure; to completion in one swept line curve (c).

For example; $\log _c(a b)$ imparts to differing intermediate inseparability of $\log (a)$ and $\log (b)$ that of eta by the equivalence that is any two logarithm's but not of a fourth; the inseparability of a fifth remains apart as time; eta; hidden and exchange for what is zeta or chi; replaces what is given in multiplicative of what is common as among that of their coadjoining in initial portion under prior or preceded later extension as the given of a substitution of a modular relation for then in what otherwise is a linearly extended to delimitation of symbolical structure of the free uniquely conformal smoothly differential curves of their free capacity of exterior and interior space of it's exquisite motion departed by side of one great as in the small of either limitation of a point as $\log (a)$ as in the $\log _c(a b)$ as the equipartition in 5 enumerabilities of their extension before prior limitation thought about as either linear or differential geometric to (log) algebraic co-extensions of curves in arc length proportion to curvilinear to linear rectified structural to given known's of their variable free relations of foundationally the arguments of finding in one what is understood in an other of what is presented before as in one of what is known formatively of the other alternative of a non-free intersecting relation; by which the freed relation to accepted declarative is this of it's for what in one is the known as the associative of geometric to the physically mathematical.

Unit Free System for then in The Freed Quantified

```
\(\log (\mathrm{a})-\log (\mathrm{b})=\log _{-} \mathrm{c}(\mathrm{a} / \mathrm{b})=\log \mathrm{c}(\mathrm{a})-\log \_\mathrm{c}(\mathrm{b})=(\log ) \sim(\log ) \sim(@ /.) \sim\)
```

As to positional and un-locability. $=$
$\log _\mathrm{c}(\mathrm{a}) / \log _{-} \mathrm{b}(\mathrm{b})-\log _{-} \mathrm{c}(\mathrm{b}) / \log _{-} \mathrm{a}(\mathrm{c})=\log _\mathrm{d}(\mathrm{B}) / \log _{-} \mathrm{c}(/)-$ eta $=0 . /$ null;
Therefore then there Therefore.
To which there is the exception of an incurrent simplicity of reduction to complexity in any one known.
The complexity of the proof is that one unitary relation of the log function to that of what is it's given and known as of logarithm in that of what is a circular relation around that of one given curve; to then in that of the given of that of a second curve of arbitrary relation; then in two for then in what are an equals equivalence of their forms; as that of curve(s); to the effect of that of their open and empty conclusion to then in the given of a formers modular relation; circumscribes the notion of what is a given modular base of regularity; as in each; the preceded argument of circular relation outwardly projectively then identifies with that of the curvilinear projective D'esaurges theorem; and then that o the inclusion of one relation of it's open exception to that of the missing digraph of one relation; the conclusion of which is it's given of one exchange for every division and every multiplication under bidirectionally; there is the zero of a locus of finite nature upon the curve as in the consideration of an other; modular base as the co-adjoint differential of their exclusion in that of what remains under the exponentiation by their power of equivalence of (a) and (b) under any five of $(+),(-),(x),(!)$, (\%) as to then what is a folding of the relation of the open exterior of a relation into that of what can remain to be found within a relation or outside; as eta; to that of time./. Then; in the given of that of what is it's exception there is the exclusion of a single remainder to none;/. Of which in that of the remarkable outcome of that either direction for equality.

Following in reverse deduction; it is true that there holds an exception to that of eta as free under points. So; taking these comments into mind; that of the following holds true: Exception is therefore one priorly.

Therefore; as $\log (e)=\log _{-} b(b)$ it is true that eta $+\log (B)=\log (A . C)$ and therefore under exception eta is free.
$\log (\mathrm{B})=\log _{-}(\mathrm{x})(\mathrm{C})+\log _{-}(!)(\mathrm{D})-$ eta $(\%,-,+, 0,1)$ of the relation of mathematics to time; given the log sum rule.

